首页-_学术活动_研究生

学术报告446:量子机器学习(国际大师讲坛)

发布日期:  2019/06/27  周时强   浏览次数: 部门: 未知   返回

报 告 人:Edwin R. Hancock教授

单位:英国约克大学计算机科学学院

报告时间:2019年7月8日(周一)10:00~12:00

报告地点:宝山校区乐乎新楼学思厅

邀请人:王健嘉

 

报告摘要:

Techniques based on the classical random walk on a graph, have proved to be extremely powerful in the domain of machine learning for developing algorithms for the analysis of high dimensional data. Examples include data embedding, data clustering and feature extraction. However, quantum walks exhibit properties not shared by their classical counterparts. So whereas the classical walk is both stationary and ergodic, the quantum walk is not. Moreover, the quantum walk admits the possibility of both entanglement and interference. These two attributes of the quantum walk allow us to develop new machine learning algorithms, with very different characteristics to their classical counterparts. For instance, interference allows the symmetry structure of graphs or data represented by graphs to captured in a natural and efficient way. In this talk I will provide a tutorial overview of the quantum walk and its properties, and then outline some of its potential uses in deep learning and complex network analysis.

 

报告人简介:

Edwin R. Hancock教授,任职于英国约克大学,是世界计算机视觉与模式识别领域的著名专家,国际模式识别协会(International Association for Pattern Recognition, IAPR)副主席,IEEE Fellow,IAPR Fellow,IET Fellow,Fellow of Institute of Physics,同时是国际模式识别领域权威期刊Pattern Recognition的主编。曾任IEEE Transactions on Pattern Analysis and Machine Intelligence,Computer Vision and Image Understanding,Image and Vision Computing,the International Journal of Complex Networks等国际期刊编委会委员,BMVC1994大会主席,BMVC2016程序主席,ECCV2006,CVPR2008,CVPR2014,ICPR2004,ICPR2016领域主席。

 

上一条: 学术报告444:网络结构熵的分析

下一条: 学术报告445:模式识别期刊投稿