首页-_学术活动_教师

学术报告357-三支决策:三分而治的思维方式和方法

发布日期:  2017/05/31  周时强   浏览次数: 部门: 未知   返回

报 告 人:Professor Yiyu Yao(University of Regina, Canada)

报告时间:6月1日(周四)14:00~17:00

报告地点:宝山校区计算机大楼402室

邀 请 人:岳晓冬 副教授

 

报告摘要:

“3”是一个奇妙的数字,它既表示了“多”,也描述了“开始、中间和结束”三个阶段、三个部分或三个单元。不难发现,基于三个单元的思维方式在我们日常生活中常常用到。三支决策(three-way decisions)给出了一个基于“三”的复杂问题求解新理论,可以理解为基于三个粒的粒计算。我们将一个整体分为三个部分或三个粒,对不同的部分采取不同的处理策略。“分”是实现“治”的一种方法,而“治”是“分”的目的。“三分而治”的三支决策模型以“分”开始,以“治”结束,从而有效地简化了复杂问题的求解过程。围绕“三分而治”,讨论三支决策的基本思想及三元思维的方式、方法。在认知时代(cognitive era),三支决策研究将逐渐兴起,并产生深远的意义。

 

报告人简介:

Yiyu Yao is a Professor with the Department of Computer Science, University of Regina, Canada. His research interests include Three-way Decisions, Granular Computing, Rough Sets, Artificial Intelligence, Web Intelligence, Information Retrieval, Data Analysis, Machine Learning, and Data Mining. He proposed a theory of three-way decisions, a triarchic theory of granular computing, interval sets, and decision-theoretic rough set models. He published over 300 papers. In 2015 and 2016, he was selected as a Highly Cited Researcher. In 2014, he received the University of Regina Alumni Association Faculty Award for Research Excellence. In 2013, a co-authored paper was included in Frontrunner 5000 (Top Articles in Outstanding Science and Technology Journals of China). In 2010, he received the Overseas Friendship Award from Chinese Rough Set and Soft Computing Society. In 2008, he received PAKDD Most Influential Paper Award (1999-2008). He is an Area Editor of International Journal of Approximate Reasoning, an Associate Editor of Information Sciences, an Advisory Board Member of Knowledge-based Systems, and a Track Editor of Web Intelligence. He is also an Editorial Board Member of Granular Computing, LNCS Transactions on Rough Sets, International Journal of Intelligent Information Systems, and several others. He is the elected President of International Rough Set Society (IRSS).

个人主页: http://www2.cs.uregina.ca/~yyao/

主办单位:上海大学计算机工程与科学学院


上一条:学术报告368:浸入式有限元及其在空间充电问题中的应用

下一条:学术报告354-miRNA及其病变学习预测方法(机器学习应用)